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The procedure and availability of the FORTRAN code for a method for automatic 
numerical generation of curvilinear coordinate systems with coordinate lines coincident 
with all boundaries of a general multiconnected, two-dimensional region containing any 
number of arbitrarily shaped bodies is described. No restrictions are placed on the shape 
of the boundaries, which may even be time dependent, and the approach is not restricted 
in principle to two dimensions. With this procedure the numerical solution of a partial 
ditferential system may be done on a fixed rectangular field with a square mesh with no 
interpolation required regardless of the shape of the physical boundaries, regardless of 
the spacing of the curvilinear coordinate lines in the physical field, and regardless of the 
movement of the coordinate system in the physical plane. A number of examples of co- 
ordinate systems and application thereof to the solution of partial differential equations 
are cited. 

1. INTRODUCTION 

There arises in all fields concerned with the numerical solution of partial differential 
equations the need for accurate numerical representation of boundary conditions. 
Such representation is best accomplished when the boundary is such that it is 
coincident with some coordinate line, for then the boundary can be made to pass 
through the points of a finite difference grid constructed on the coordinate lines; 
hence the choice of cylindrical coordinates for circular boundaries, elliptic coordinates 
for elliptical boundaries, etc. Finite difference expressions at, and adjacent to, the 
boundary may then be applied using only grid points on the intersections of coordinate 
lines, without the need for any interpolation between points of the, grid. 

The avoidance of interpolation is particularly important for boundaries with strong 
curvature or slope discontinuities, both of which are common in physical applications. 
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Likewise, interpolation between grid points not coincident with the boundaries is 
particularly inaccurate with differential systems that produce large gradients in the 
vicinity of the boundaries, and the character of the solution may be significantly 
altered in such cases. In most partial differential systems the boundary conditions are 
the dominant influence on the character of the solution, and the use of grid points not 
coincident with the boundaries thus places the most inaccurate difference represen- 
tation in precisely the region of greatest sensitivity. The generation of a curvilinear 
coordinate system with coordinate lines coincident with all boundaries (herein called 
a “boundary-fitted coordinate system” for purposes of identification) is thus an 
essential part of a general numerical solution of a partial differential system. 

A general method of generating boundary-fitted coordinate systems is to let the 
curvilinear coordinates be solutions of an elliptic partial differential system in the 
physical plane, with Dirichlet boundary conditions on all boundaries. One coordinate 
is specified to be constant on each of the boundaries, and a monotonic variation of the 
other coordinate around each boundary is specified. Thus, there is a coordinate line 
coincident with each boundary. The procedure, not restructed in principle to two 
dimensions, allows the coordinate lines to be concentrated as desired, and is applicable 
to all multiconnected regions (and thus to fields containing any number of arbitrarily 
shaped bodies). This automatic numerical generation of boundary-fitted coordinate 
systems has been discussed by the authors in Refs. [l, 21. 

This general idea has been applied previously to two-dimensional regions interior 
to a closed boundary (simply-connected regions) by Winslow [3], Bariield [4], Chu [5], 
Amsden and Hirt [6], and Godunov and Prokopov [7]. Winslow [3] and Chu [5] 
took the transformed coordinates to be solutions of Laplace’s equation in the physical 
plane which, as is shown in the next section, makes the physical Cartesian coordinates 
solutions of a quasi-linear elliptic system in the transformed plane. Barfield [4] and 
Amsden and Hirt [6] reversed the procedure, taking the physical coordinates to be 
solutions in the transformed plane of a linear elliptic system which consists of Laplace’s 
equation modified by a multiplicative constant on one term. This makes the trans- 
formed coordinates solutions of a quasi-linear elliptic system in the physical plane. 
Barfield also considered a hyperbolic system, but such a system cannot be used to 
treat general closed boundaries, since only elliptic systems allow specification of 
boundary conditions on the entirety of closed boundaries. Stadius [8] also used a 
hyperbolic system to generate a coordinate system for a doubly-connected region 
having parallel inner and outer boundaries. With parallel boundaries it is only neces- 
sary to specify conditions on one of the boundaries, the location of the other boundary 
being free. The elliptic system, however, allows all bonudaries to be specified as desired 
and thus has much greater flexibility. 

Amsden and Hirt [6] constructed the coordinate generation method by iterative 
weighted averaging of the values of the physical coordinates at fixed points in the 
transformed plane in terms of values at neighboring points. Although not stated 
as such, this procedure is precisely equivalent to solving Laplace’s equation, or 
modification thereof of the form noted above in Barfield [4], for the physical coordi- 
nates in the transformed plane by Gauss-Seidel iteration. Amsden and Hirt also 
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allowed the boundary to move at each iteration, but this is simply equivalent to 
approaching the solution of the boundary-value problem through a succession of 
boundary-value problems converging to the problem of interest. In the approach of 
Godunov and Prokopov [7] the elliptic system is quasi-linear in both the physical 
and transformed planes. These authors applied a second transformation to that used 
by Chu [5], the transformation functions of this latter transformation being chosen a 
priori to control the coordinate spacing. Though not stated as such, the overall 
transformation may be shown to be generated by taking the transformed coordinats 
to be solutions in the physical plane of Laplace’s equation modified by the addition 
of a multiple of the square of the Jacobian, the multiplicative factors being a priori 
chosen functions of the physical coordinates. 

Meyder [9] generated an orthogonal curvilinear system by solving for the potential 
and “force” lines in a simply-connected region and taking these as the coordinate lines. 
This amounts to making the curvilinear coordinates solutions of Laplace equations 
in the physical plane with Dirichlet boundary conditions (constant) on part of the 
boundary and Neumann boundary conditions (vanishing normal derivative) on the 
remainder. The solution for the coordinates was done, however, in the physical plane 
on a rectangular grid using interpolation at the curved boundaries, rather than in the 
tansformed plane. 

Orthogonal curvilinear coordinates for multiconnected regions, including regions 
with two bodies, have been generated by Ives [lo] using conformal mapping. Con- 
formal mapping is a special case of the generation of coordinate systems by solving 
an elliptic boundary-value problem, but is not extendable to three dimensions and is 
less flexible in the spacing of the coordinate lines. 

In the present research, the technique of generating the transformed coordinates 
as solutions of an elliptic differential system in the physical plane has been applied to 
multiconnected regions with any number of arbitrarily shaped bodies (or holes). The 
elliptic equations for the coordinates are solved in finite difference approximation by 
SOR iteration. Procedures for controlling the coordinate system so that coordinate 
lines can be concentrated as desired have been developed. Initial effort was confined 
to two dimensions in the interest of computer economy, but the technique is extendable 
in principle to three dimensions. The procedure is also applicable to fields with time- 
dependent boundaries, one coordinate line remaining fixed to the moving boundary. 
Here the equations for the coordinates must be resolved at each time step. The 
computational grid remains fixed in spite of the movement of the physical grid. 

Any partial differential system can be solved on the boundary-fitted coordinate 
system by transforming the set of partial differential equations of interest, and 
associated boundary conditions, to the curvilinear system. Since the boundary-fitted 
coordinate system has coordinate lines coincident with the surface contours of all 
bodies present, all boundary conditions can be expressed at grid points, and normal 
derivatives on the bodies can be represented using only hnite differences between grid 
points on coordinate lines, without need of any interpolation, even though the 
coordinate system is not orthogonal at the boundary. The transformed equations 
can then be approximated using finite difference expressions and solved numerically 
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in the transformed plane. Thus, regardless of the shape of the physical boundaries, 
and regardless of the spacing of the finite grid in the physical field, all computations, 
both to generate the coordinate system and, subsequently, to solve the partial 
differential system of interest can be done on a rectangular field with a square mesh 
with no interpolation required on the boundaries. Moreover, the physical boundaries 
may even be time dependent without affecting the grid in the transformed region. 

The computer software utilized to generate the boundary-fitted coordinate system 
is independent of the set of partial differential equations to be solved on this system. 
For example, numerical solutions for inviscid and viscous fluid flows have been 
obtained using this system [I I-151. The partial differential equations governing these 
phenomena differ drastically. However, for a given body geometry, the same boundary- 
fitted system generation program was used in both solutions. Another major advantage 
of using boundary-fitted coordinates is that the computer software generated to 
approximate the solution of a given set of partial differential equations is completely 
independent of the physical geometry of the problem. The coordinate systems for the 
wide variety of bodies cited in this report, for example, were all developed utilizing 
the same computer program. 

The computer code for generation of boundary-fitted coordinate systems for 
fields containing any number of arbitrarily shaped bodies is now available for general 
use [2], and its capabilities and application are discussed in the following sections. 
A complete discussion of the procedure, the complete computer code with instructions 
for its use, and several examples and test cases are included in Ref. [2]. The technique 
of the use of the boundary-fitted coordinate systems in the numerical solution of 
partial differential equations is illustrated in Ref. [13]. 

2. COORDINATE SYSTEM GENERATION 

A. Mathematical Development 

The basic ideas of the generation of boundary-fitted curvilinear coordinate systems 
have been presented earlier [I], and will only be summarized here. Complete detail 
is given in Ref. [2]. 

Let it be desired to transform the two-dimensional multiconnected region D, 
bounded by three simple closed arbitrary contours, onto a rectangular region D*. 
One such transformation for two bodies is illustrated in Fig. 1. The bodies are 
connected with one arbitrary cut, with an additional cut joining one of the body 
contours to the outer boundary. The physical plane contours I’, - r, map, respec- 
tively, onto the contours r,* - I’,* in the transformed plane. Note that the body 
defined by the union of P, and r, is split into two segments (r,* and ra*), as is the 
cut joining this body and the one defined by contour r, . The q-coordinate is the same 
for both of the bodies and cut between them. Conversely, the cut defined by I’, and I’, 
in the physical plane is taken as a 5 = constant line in the transformed plane. The 
outer boundary contour r, maps onto the upper boundary in the [.$, 771 plane, 
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Physical Plane 

Transformed Plane 

FIG. 1. Field transformation-Multiple bodies. 

becoming a constant pline. Two reentrant boundaries occur for this two-body 
transformation. The left and right vertical boundaries (r,*, F,*) are coincident in the 
physical plane and thus constitute reentrant boundaries in the transformed plane. 
In addition a horizontal reentrant segment due to the coincidence of r, and r, in the 
physical plane arises. The coordinate functions and the derivatives thereof are 
continuous across these reentrant boundaries. 

Certain considerations must be taken into account in the choice of a suitable 
elliptic generating system for the coordinates as discussed in Ref. [2]. The system 
chosen allows considerable control of the coordinate line spacing as is illustrated in a 
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later section. Control of the spacing of the coordinate lines on the body is easily 
accomplished, since the points on the body are input to the program. The spacing of 
the coordinate lines in the field, however, must be controlled by varying the elliptic 
generating system for the coordinates. One method of variation is to add inhomo- 
geneous terms to the right sides of Laplace equations, so that the generating system 
becomes 

L + 4,, = m, 4, %x + %JY = QK 7) (1) 

with the Dirichlet boundary conditions 

where r], and r/2 are different constants (q2 > Q), and tl(x, v), f2(x, J& .$,(x, y), and 
&(x, y) are specified monotonic functions on F, , r2 , r, , and r, , respectively. 
The arbitrary curve joining I’, with r, , and r, with r, , in the physical plane, 
which transforms to the left and right sides of the transformed plane, specifies a 
branch cut for the multiple-valued function &c, y). Thus, the values of the physical 
coordinate functions x(S, v) and &$,T) are the same on r, as on r, , and these 
functions and their derivatives are continuous from r, to r, . Therefore, boundary 
conditions are neither required nor allowed on r, and r, . The same comments apply 
to the other pair of reentrant boundaries, r, and r, , which form a branch cut between 
the two bodies. 

Since it is desired to perform all numerical computations in the uniform rectangular 
transformed plane, the dependent and independent variables must be interchanged 
in (1). In the transformed plane these equations become 

(yxtc - 2&r, + yx,,, + J2Wc + Qx,,) = 0, 
~YY,, - VYC~ + YY~ + J2Pyc + QYJ = 0, 

where 
a = x,2 + yv2, y 3% xc2 f YE2, 

B = x9, + YEY, 9 J = XCY~ - X,Y, 3 

with the transformed boundary conditions 

(24 
CW 

The functionsf, , f2, g, , g, , h, , h, , q1 , and q2 are specified by the known shape of 
the contours r, , r2 , r, , and r, and the specified distribution off thereon. As noted, 

5fW4/3-5 
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boundary data are neither required nor allowed along the reentrant boundaries r3*, 
ra*, rs*, and I’,*. 

The system given by the equations of (2) is a quasi-linear elliptic system for the 
physical coordinate functions, x(&v) and J((, T), in the transformed plane. Although 
this system is considerably more complex than that given by (l), the boundary 
conditions are specified on straight boundaries, and the coordinate spacing in the 
transformed plane is uniform. The boundary-fitted coordinate system generated by 
the solution to (2) has a constant q-line coincident with each boundary in the physical 
plane. The 4 = constant lines may be spaced as desired around the boundaries, 
since the assignment of the &values to the [x, y] boundary points via the functions 
fi , fi , g, , g, , hI , h, , q1 , and q2 is arbitrary. (Numerically, the discrete boundary 
values [xk , yk] are transformed to equispaced discrete e,-points on both boundaries.) 
Control of the radial spacing of the 7 = constant lines and of the incidence angle of 
the [ = constant lines at the boundaries is accomplished by varying the functions 
P(& 7) and Q(& 7) in (2). All numerical computations, both to generate the boundary- 
fitted coordinate system and subsequently to utilize the coordinates for solving a set of 
partial differential equations, are executed on a rectangular field with a uniform grid. 

The effect of changing the functions I’(<, 7) and Q(& q) on the coordinate system 
is discussed in Ref. [2]. One particularly effective procedure is to choose P and Q as 
exponential terms, so that the coordinates are generated as the solutions of 

- 2 bj sgn(5 - 5J exp(---d,((5 - tji)’ + (7 

- jfl bj sgdrl 

= Q<t, q>, 

rli)2)1’2) 

vi) expC--ci I q - vi I) 

qj) exp(--dj((t - tj12 + 61 - qj12Y> 

(9 

where the positive amplitudes and decay factors are not necessarily the same in the 
two equations. Here the first terms have the effect of attracting the 6 = constant 
lines to the 8 = & lines in Eq. (3a), and attracting 77 = constant lines to the r] = vi 
lines in Eq. (3b). The second terms cause < = constant lines to be attracted to the 
points (& , r)& in (3a), with similar effect on r] = constant lines in (3b). Several 
examples of the use of coordinate system coltrol are given in Section 3. 
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B. Numerical Solution 

All derivatives in Eq. (2) are approximated by second-order central finite difference 
expressions. The resulting difference equations are given in Ref. [2]. The set of non- 
linear simultaneous difference equations is solved by point SOR iteration. 

The actual values of the curvilinear coordinates, 5 and 7, are irrelevant to the 
subsequent use of the coordinate system in the numerical solution of partial differential 
equations, for the mesh widths in the transformed plane, LIE and 47, simply cancel 
out of all difference expressions for transformed derivatives. Therefore & and do 
are both taken as unity for convenience, with 5 and q each ranging from unity to the 
total number of coordinate lines of each description. 

Z”...” . . . . . . * .,.......,............... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~.... : 

FIG. 2. Singlebody configuration. 
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C. Multiple-Body Segment Arrangements 

In the case of a single body it is logical to keep the body contour in one segment, 
with a single cut connecting the single segment to the outer boundary. This type of 
arrangement is illustrated in Fig. 2. (Figure 3 shows an alternate single body 
arrangement. In these and all subsequent figures the dotted lines on the segment 
arrangement diagrams identify the two members of a reentrant pair.) In the case of 
multiple bodies there is a wider choice of resonable arrangements, some of which 
may be better than others for certain applications. The boundaries in the physical 
plane may be split into as many segments as desired, and these segments may be 
arranged around the rectangular boundary of the transformed plane in any way 
desired. These segments are all connected by branch cuts in the physical plane and by 
reentrant boundaries in the transformed plane. Several of these arrangements are 
illustrated in Figs. 4-12. Illustrative values of the segment input parameters are given 
in Ref. [2] for each of these arrangements. 

In the arrangement of Fig. 4, an q-line encircles both bodies and forms a cut 
between the bodies, the cut to the outer boundary being a &line. The outer boundary 

FIG. 3. Alternate single-body configuration. 
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1 2 1s ; 26 1 56 : 66 2 ei 
. . _. _.. . . . . . . . 

FIG. 4. Double-body segment configuration No. 1. 

is also a line of constant 7, but at a different value. Note that one body is split into 
two segments, while the other body and the outer boundary are each in single segments. 
Figure 5 shows an arrangement in which each body is in a single segment, each body 
being a &line of different value. Here there is no cut between the bodies, but rather 
an y-line cut between each body and the outer boundary, which is split into two 
segments, each being an T-line of different value. (This produces a system similar 
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FIG. 6. Double-body segment configuration No. 3. 
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RG. 7. Double-body segment configuration No. 4. 
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26 

31 

. . . . . . . 

2 6 

2 

f1 

""'--: 

31 

FIG. 8. Double-body segment configuration No. 5. 

to a bipolar coordinate system.) In Fig. 6 each body is also in a single segment with 
the outer boundary split into two segments, but here an T-line encircles each body and 
forms the cut between that body and the outer boundary. In Fig. 7 one body is a 
single segment encircled by an T-line which forms a cut to the other body. The other 
body is split into two segments, each being a t-line of different value, with each 
segment connected to the outer boundary by a &line. The outer boundary is in a 
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FIG. 9. Double-body segment configuration No. 6. 

single segment and is an T-line. Other arrangements are shown in Figs. 8-12. All 
these arrangements are shown without coordinate line attraction, and, consequently, 
many of the resulting systems exhibit wide spacing in concave areas. This spacing 
can be improved by coordinate attraction as illustrated in the examples given in 
Section 3. 
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i i 2 46 : 36 co 66 66 2 101 : 

: .......... . .-.-.,: 

FIG. 10. Double-body segment configuration No. 7. 

D. Convergence Acceleration 

For a difference equation of the general form 

al(.L+l.5 +h-1.5) + 4fi.i+l +&5-d + h(h+l.i -.L5) 

+ bz(fi,p+l -fi,j-l) + &5 + dij = 0 (i = 1, 2 ,..., I; j = 1, 2 ,..., 4 (4) 

with boundary values specified on i = j = 0, i = I + 1, and j = J + 1, and a, , a, , 
b, , b, , c, and d constant, the optimum value of the SOR acceleration parameter w  
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)....___._...___...___.____..---. _ -..-..̂ _.--....-.-.....-....... _ .._...... 

;... . . . . ..-.. . . . . . ..-. . . . . . ._.... . _. .-; 
36 i 21 2 51 ; 36 

: co 00 

: 24 21 

; -. , ._I * . . . . - 

FIG. 11. Double-body segment configuration No. 8. 

can be obtained in the case where uI2 > b12 and a22 3 b22, and in the case where 
a,* < b12 and us2 < b22, using the techniques of Ref. [16]. The optimum parameters 
in these two cases are 

Case 1. al2 > b12 and a22 3 b,* 

2 
OJ = i+ (1 - p2)‘P (overrelaxation, 1 ,< w  < 2). (5) 
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L a3 I6 ~.'."-..;6 : 66 i 66 Q) i~~.,,.--~ 

1 101 

FIG. 12. Double-body segment configuration No. 9. 

Case 2. aI2 d b12 and aa < bz2 

2 
w = 1 + (1 + py (underrelaxation, 0 < w  < 1) (6) 

where 

p = 2((a,/c)2 - (bl/c)2)1/2 cos(r/(Z + 1)) 

+ 2((a2/cJ2 - @2/c)2)1’2 cos(d(J + 1)). (7) 
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In the remaining case where aI2 2 b,” and a2 2 < b 2, > 2 no theoretical determination 
of the optimum acceleration parameter exists as yet. 

Since the difference equations for the coordinate system are nonlinear, the above 
theory is not directly applicable. However, if the equations are considered as locally 
linearized, then a local optimum acceleration parameter can be obtained which will 
vary over the field. It should be noted that the local linearization is applied only to the 
determination of the acceleration parameters, not the actual solution of the difference 
equations. 

Following this approach and neglecting the effect of the cross derivatives, the local 
constants in the above equations as applied to (2) become 

a, = 01, 

bl = J2P/2, 

c = -2(a + y), 

a2 = Y, 

6, = J”Q/2, 

so that the locally optimum acceleration parameters are, for an IMAX - JMAX 
field 

2 
% = 1 + (1 - p3112 (overrelaxation). 

Case 2. aij < Jfi 1 Pij l/2 and yij < Jz I Qij l/2 

2 
mu = 1 + (1 + p;?)lP 

(underrelaxation) 

where 

1 
Pij = 

%i + yij N 
2 olij - z!?$y2 COS (IMA; _ J 

+ (yz - *y2 cos (JM*; _ J] . 

(8) 

(9) 

In the remaining case where 01 2 J2 I P j/2 and y 5 J2 1 Q 112, not even a local 
optimum is available. The program allows a choice of strategy in this case: over- 
relaxation, underrelaxation, or a weighted average as described in Ref. [2]. 

In order to provide some guide to the selection of acceleration parameters for the 
most rapid convergence of the iterative solution, the optimum values were determined 
in a number of representative cases by computer experimentation. The results of these 
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studies are given in Ref. [2] for use in operation of the computer program. The use 
of the variable acceleration parameter field is advantageous in some cases, particularly 
with strong coordinate attraction or other situations where there is large variance of 
coordinate line spacing over the field. The calculation of the variable acceleration 
parameter field, however, is time consuming, and the use of a constant parameter 
is more efficient in many cases. 

3. COMPUTER CODE AND APPLICATIONS 

A. Computer Code 

The computer code is independent of the boundary shapes and numbers, these 
being simply input values to the program. The various boundary segments of a 
multiple body field may be arranged in any way desired on the rectangular boundary 
of the transformed plane by simply adjusting input values. Points may be distributed 
around the boundaries as desired, with concentrations of points on some portions 
of the contour and more widely spaced points on others. 

The coordinate system has a natural tendency to expand its line spacing from the 
inner boundary to the outer boundary. More concentration of coordinate lines in the 
vicinity of specified contours or points can be achieved by adjusting input values in the 
coordinate system control feature of the program. The variable acceleration parameter 
field for the SOR iteration will be calculated by the program if desired, or a uniform 
parameter may be input. 

The program provides for several automatic convergence aids that may be activated 
by input parameters if necessary in particular cases, all of which are handled internally: 
(1) a choice of several different types of initial guesses for the iteration, (2) gradual 
addition of coordinate system control, and (3) gradual movement of outer boundary 
out to its hnal position. 

Both printed and file storage output are available, and an internal contour plot 
routine provides plotted curvilinear coordinate lines on either a Calcomp or Gould 
plotter, all these options being controlled by input. The size of the plot and the area 
of the field covered are both adjustable. 

The standard program allows a maximum field size of 70 LJ lines and 60 ~7 lines and 
requires a core size of 52,400 words. Error signals and instructions for modification 
are given if these limits are exceeded. Typical computer times are in the range of a 
few minutes on the UNIVAC 1106. The code is available in both the UNIVAC and 
the CDC forms (Ref. [2]). 

A second program is also included in Ref. [2] that calculates the scale factors from 
the coordinates for use in the solution of partial differential equations on the coordi- 
nate system. These factors are output to file storage. Any set of partial differential 
equations may be solved on the curvilinear coordinate system by programming the 
transformed equations using these coordinate scale factors. This procedure is illus- 
trated in Ref. [13]. 
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FIG. 13. Examples of coordinate system control. 
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lb) 
FIG. 14. Example of attraction into concave region. 

B. Coordinate System Control 

As discussed in Section 2, the curvilinear coordinate lines may be concentrated by 
attracting the lines to other lines or points in the field. The control of the coordinate 
system in this manner is illustrated in Figs. 13 and 14. Input parameters involved 
are given in Ref. [2]. In Fig. 13 the basic system generated by the Laplace equations 
(zero right-hand sides) is shown in (a). Tn (b) the v-lines have been attracted to the 
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body. In (c) the attraction to the body has been made stronger on two sides, while 
in (d) the lines are more strongly attracted over a small portion of the body. In (e) 
and (f) the angle of intersection of the lines with the body has been controlled, over 
the entire body in (e) and over only a portion of the body in (f). 

Figure 14 illustrates the use of control to pull the coordinate lines into a concave 
portion of the body contour, (a) being the result of the Laplace equations, and (b) 
having the lines attracted to the body and to the slope discontinuity on the lower 
surface. 

C. Various Body Shapes 

Coordinate systems for a number of boundary shapes and configurations are given 
in Ref. [2], as well as in Refs. [l l-151. A few examples are shown herein in Figs. 14-18. 

: ‘ __ . - . . . . . .  I I  .  .  .  .  . . - - . . . - -  _ .  .  .  .  . . - - . _ .  _ . . -  - - - - . - . . - - . - _ _ - . - - . . . . _ . _ _ . . . . . . . . . . . . . - - . . . .  _._-. ._ .  .  .  ____ _._. .  ___ 
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FIG. 16. Contracted coordinate system-Multiple airfoil. 
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FIG. 17. Coordinate system-triangular simply-connected region. 

Figure 16 shows a contracted coordinate system for a multiple airfoil, while Figs. 17 
and 18 show simply connected regions. 

D. Application to Solutions of Partial D@erential Equations 

A number of examples of coordinate systems and their use in the solution of the 
partial differential equations involved in fluid flow have been given in Refs. 
[l, 2, 1 l-151. In particular, application is made to potential flow about multiple 
bodies (Fig. 19) in Ref. [13] and to the solution of the full incompressible Navier- 
Stokes equations in Ref. [14]. Initial applications to Navier-Stokes solutions for 
multiple airfoils (Fig. 20) and for submerged hydrofoils have also been reported in 
[12, 151. Excellent agreement with the analytic solutions for lifting potential flow 
about Karman-Trefftz airfoils and multiple cylinders was reported in Ref. [13]. 
Examples are given in Ref. [2] also. Similar excellent agreement with the analytic 
solution has been obtained for the deflection contours for a simply supported 
uniformly loaded triangular flat plate (Fig. 21) using the coordinate system of Fig. 17, 
a problem involving solution of the biharmonic equation (Ref. [17]). 

E. Extension to Three Dimensions 

As noted above, the generation of curvilinear coordinate systems by solution of 
elliptic systems is not restricted to two dimensions. Initial extension to three dimen- 
sions has been made, and potential flow solutions for several bodies having a plane of 
symmetry have been obtained using the three dimensional coordinates (Ref. [IS]). 
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FIG. 18. Coordinate system-Key-seat shaft, simply-connected region. 
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FIG. 19. Potential flow streamlines--Double airfoil. 
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FIG. 20. Velocity vectors, viscous flow-Double airfoil, R = 1000. 
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FIG. 21. Comparison of numerical and analytic solution for deflection contours for a simply- 
supported uniformly loaded Plate. 

4. CONCLUSION 

The boundary fitted curvilinear coordinate systems can eliminate, to a large degree, 
the problem of boundary shape in the numerical solution of partial differential 
equations. The efficiency of the procedure has been demonstrated by application to 
the solution of several partial differential systems. The boundary fitted coordinates 
may allow some problems that have been approachable only by finite element methods 
to now be treated by finite difference methods. 
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